
Strategies for Parallelizing Swarm
Intelligence Algorithms

Franco Cicirelli
DIMES - University of Calabria

Rende (CS), Italy

email: f.cicirelli@dimes.unical.it

Gianluigi Folino, Agostino Forestiero, Andrea Giordano,
Carlo Mastroianni, Giandomenico Spezzano

ICAR-CNR, Rende (CS), Italy

email: {folino,forestiero,giordano,mastroianni,spezzano}@icar.cnr.it

Abstract—Swarm intelligence algorithms, based on multi-
agent systems, are often used to solve complex problems that
are not affordable through classical centralized/deterministic
solutions. In many cases, to enhance the performance of such algo-
rithms, the computation can be distributed to parallel/distributed
nodes, in accordance with different strategies. Specifically, par-
allelization can be achieved either by partitioning the space in
which agents operate among the nodes, or by assigning the entire
space to each node but distributing input data through a sampling
approach. Another choice is whether or not the management of
conflicts is needed to prevent possible loss of data consistency. This
paper discusses such issues, while referring to two well-known
types of swarm intelligence algorithms – ants and flocking – and
compares the mentioned strategies, evaluating the performance
results in terms of speedup.

Keywords—bio-inspired algorithms; multi-agent systems; paral-
lel algorithms; swarm intelligence;

I. INTRODUCTION

Bio-inspired algorithms are widely exploited to solve a
number of complex problems (combinatorial algorithms, task
allocation, routing problems, graph partitioning, etc.) [2] and
have been also adopted to provide advanced services in P2P
networks [1], Grid systems and Cloud infrastructures. Most
biological systems are founded on the swarm intelligence
paradigm. A number of small and autonomous entities perform
very simple operations driven by local information: for exam-
ple, while searching for food an ant follows a pheromone sub-
stance deposited by another ant that has already discovered a
food source; a bird adjusts its speed and direction by following
the movements of nearby birds. From the combination of such
operations a complex and intelligent behavior emerges: ants
are able to establish the shortest path towards a food source;
birds travel in large flocks and rapidly adapt their movements
to the changing characteristics of the environment, etc. [2] [8].

Swarm biological algorithms can be executed by using
situated multi-agent systems [22] [21] [11]: the behavior of
insects and birds can be reproduced by agents that are situ-
ated in a hosting environment (territory) and perform simple
operations. Agent-based systems may inherit useful and bene-
ficial properties from biological counterparts, namely: (i) self-
organization, since decisions are based on local information,
i.e., without any central coordinator; (ii) adaptivity, since
agents can react flexibly to the ever-changing environment; (iii)
stigmergy awareness [14], since agents are able to interact and
cooperate through the modifications of the environment that
are induced by their operations.

Parallel/distributed execution of bio-inspired algorithms is
often required to cope with the high demand of computational
resources needed when the problem becomes more complex
or its size increases. In a parallel/distributed scenario, the
territory represents a huge shared variable of a concurrent
system that needs a careful handling. Territory management
requires conflicts and data consistency issues to be addressed.
Moreover, frequent access to territory information may easily
become a bottleneck impairing the overall system performance
and scalability.

This work describes and compares two different method-
ologies for parallelizing SI algorithms, which can be used
depending on the specific requirements and features of the
environment and of the problem to be solved. The first
methodology splits the entire space in which the agents move
into regions. Each region, along with the data and the agents
residing on it, is allocated for execution on a distinct computing
node. The borders of the regions require to be kept aligned
and updated. This methodology is further refined in two
variants: space partitioning without conflict avoidance and
space partitioning with conflict avoidance. The former can
be used when the algorithm to execute is not affected by
concurrency issues. The latter, instead, is used to transparently
avoid that concurrent agents allocated on different computing
nodes may undergo conflicting actions. This methodology
partitions the data among different nodes, while the space is
not partitioned, but it is shared/replicated over all the nodes.
In order to better illustrate the advantages and drawbacks
of the two approaches, two examples of SI algorithms are
described: a flocking algorithm for searching objects and an ant
algorithm for spatial clustering. Experiments show that both
methodologies are efficient and scale well, and help to identify
which of the two is the most suitable for any specific problem.

The paper is structured as follows: Section II and III
illustrate, respectively, the flocking and the ant algorithm. In
Section IV, the two different methodologies used for paralleliz-
ing SI algorithms are described and compared by considering
their effectiveness when applied to the flocking and the ant
algorithms. Section V shows the performance in terms of
speedup of the different strategies. Section VI concludes the
paper and gives hints on future research directions.

II. A FLOCKING ALGORITHM FOR SEARCHING SPATIAL

DATA

In this section, a multi-agent stochastic search algorithm
is presented, which has the advantage of being easily imple-

2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.101

329

mentable on parallel and distributed machines and is robust
with respect to the failure of individual agents. First, the rules
governing the basic flock model [20] are explained; then, the
algorithm is specialized to the problem of searching objects in
a 2-dimensional space.

The flocking algorithm was originally proposed by
Reynolds [20] as a method for simulating the flocking behavior
of birds on a computer both for animation and as a way to
study emergent behavior. Flocking is an example of emergent
collective behavior: there is no leader nor global control. Each
agent/bird reacts only to flock mates within a certain small
radius, and the intelligent behavior emerges from such local
interactions. The basic flocking model consists of three kind
of simple steering behavior: (i) Separation gives an agent
the ability to maintain a certain distance from its neighbors,
which prevents agents from crowding too closely together;
(ii) Cohesion supplies an agent with the ability to cohere
(approach and form a group) with other nearby agents. Agents
are attracted towards the center od their group through a
steering force that is applied in the direction of that average
position; (iii) Alignment gives an agent the ability to align
with other nearby characters. Steering for alignment can be
computed by finding all agents in the local neighborhood and
averaging together the ’heading’ vectors of the nearby agents.

Different variants of the basic flock algorithms can be
used to cope with the problem of searching interesting objects
in spatial data. An adaptive algorithm able to discover these
points in parallel was introduced in [12]. This algorithm
uses a modified version of the standard flocking algorithm,
which incorporates the capacity for learning that is present in
many insect colonies, such as ants or bees. In the modified
algorithm, the agents are transformed into hunters with a
foraging behavior that allows them to explore spatial data
efficiently.

The algorithm starts with a fixed number of agents that
occupy a randomly generated position in a 2-dimensional
space. Each agent moves around the spatial data, testing the
neighborhood of each location in order to verify whether a
point can have some desired properties. Each agent follows the
rules of movement described in Reynolds’ model. In addition,
the model considers four different kinds of agents, classified
on the basis of some properties of data in their neighborhood.
Different agents are characterized by a different color: red,
revealing interesting patterns in the data, green, a medium one,
yellow, a low one, and white, indicating a total absence of
patterns.

The main idea behind this approach is to take advantage of
the colored agents in order to explore more accurately the most
interesting regions (signaled by the red agents) and avoid the
ones without interesting points (detected by the white agents).
Red and white agents stop moving in order to signal this type
of region to the others, while green and yellow ones fly to find
denser zones. Indeed, each flying agent computes its heading
by taking the weighted average of alignment, separation and
cohesion (as illustrated in Figure 1).

The following are the main features which make this model
different from Reynolds’ model:

• Alignment and cohesion do not consider yellow agents,
since they move in a not very attractive zone.

Fig. 1. Computing the direction of a green agent.

• Cohesion is the resultant of heading towards the
average position of the green flockmates (centroid),
of the attraction towards reds, and of the repulsion
from whites, as illustrated in Figure 1.

• A separation distance is maintained from all the
agents, apart from their color.

In Figure 2, we summarized the pseudo code of the overall
algorithm with the main functions better explained in the table
I.

for i=1 . . . MaxIterations

foreach agent (yellow, green)

age=age+1;

if (age > Max Life)

generate new agent();die();

endif
if (not visited (current point))

property = compute local property(current point);

mycolor= color agent(property);

endif
end foreach
foreach agent (yellow, green)

dir= compute dir();

end foreach
foreach agent (all)

switch (mycolor){
case yellow, green: move(dir, speed(mycolor)); break;

case white: stop(); generate new agent(); break;

case red: stop(); generate new close agent(); break; }
end foreach

end for

Fig. 2. The pseudo-code of the adaptive flocking algorithm.

Function Meaning

generate new close agent() generate a new agent in a random position (close to the current)
generate new agent() generate a new agent in a random position of the search space
stop() stop the agent
die() kill the agent
compute local property(P) compute the desired property at the point P
color agent(prop) color the agent on the basis of the property prop
speed(col) compute the speed of the agent depending on the color col
compute dir() compute the new direction of the agent using the modified Reynolds’ model
move(dir, s) move the agent with direction dir and speed s

TABLE I. MEANING OF THE MAIN FUNCTIONS USED IN THE
PSEUDOCODE.

The color of the agent is assigned on the basis of the
desired property at the point in which it falls; the assignment
is made on a scale going from white (property = 0) to

330

red (property > threshold), passing for yellow and green,
corresponding to intermediate values. Yellow and green agents
compute their direction, according to the rules previously
described, and move following this direction. Green agents
move more slowly than yellow agents since the former explore
more interesting regions. A formal description of this flocking
algorithm and its application to the problem of clustering large
dataset is presented in [12].

The described flock algorithm is inherently parallel and is
apt to be implemented on parallel/distributed architectures, as
will be detailed in Section IV.

III. AN ANT ALGORITHM FOR CLUSTERING SPATIAL DATA

The objective of the basic ant algorithm presented in [2]
is to cluster items in a two-dimensional space. The space is
partitioned in cells, forming a two-dimensional grid. Each ant
moves hopping between adjacent cells and has visibility over
the items deposited in its visibility area.

In the simplest scenario, in which items are identical and
are spread, the goal is to create regions in which items are
accumulated, leaving empty regions in between. This basic
version can be specialized in many ways depending on the
application. In a very common and significant variation, items
belong to a number of predefined different classes, and the
objective becomes to spatially sort items, i.e., separate items
of different classes and clustering items of the same class. This
problem has a large number of applications in several domains,
from the organization of physical objects performed by robots
to data analysis and clustering in distributed information sys-
tems.

In the following, we briefly describe the approach presented
in [13]. Each ant contributes to the reorganization by pick-
ing and dropping items from/to the cells. The ants perform
their operations following time-stepped advancements. At each
time-step, every ant performs a single operation, either a hop
towards an adjacent cell or a drop/pick attempt. The pick
and drop operations are driven by corresponding probability
functions, which are inspired by the mechanisms introduced
in [9], and later elaborated and discussed in [2] and [18], to
emulate the behavior of some species of ants that cluster and
sort items in their environment.

The probability of picking an item of a given class from a
cell must decrease as items of the same class are accumulated
in the visibility area centered in that cell. This ensures that
as soon as the equilibrium condition is broken (i.e., items
belonging to different classes begin to be accumulated in dif-
ferent areas), a further reorganization of items is increasingly
fostered. The Ppick probability function, defined in formula
(1) below, and inspired by the pick probability defined in [2],
aims to achieve the spatial separation of items belonging to
different classes.

Ppick =

(
kp

kp + fc

)2

(1)

For each class c of items, the fraction fc is computed as
the number of items of class c, accumulated in the cells within

the visibility area, divided by the overall number of items of
all classes that are accumulated in the same area. As the local
area accumulates more items of a class, with respect to other
classes, fc increases and the value of the pick probability for
this class becomes lower, and vice versa. This has to effect of
inducing agents to pick items that are uncommon in the local
area, and leave items of the class that is being accumulated.
The parameter kp is assigned a non-negative value and is used
to tune the clustering effort. In the tests performed in this work
it is set to 0.1, as in [2].

After picking an item, the agent travels the system hopping
between adjacent cells, and at any new cell it must decide
whether or not to drop the item. Like the pick function, the
drop function is first used to break the initial equilibrium and
then to strengthen the spatial clustering of items. The drop
probability for a class, shown in formula (2) below, increases
as the local area accumulates items of this class. In (2), the
fraction fc is defined as in formula (1), whereas the parameter
kd is set to 0.3 [2].

Pdrop =

(
fc

kd + fc

)2

(2)

The effectiveness of the clustering algorithm is evaluated
through a spatial entropy function, based on the well-known
Shannon’s formula for the calculation of information content.
For each cell l, the local entropy El, defined in formula (3),
gives an estimation of the extent to which the items have
been spatially mapped in the area around l. In (3), fc is the
fraction of items of class c (c = 1...C, where C is the number
of predefined classes) that are located in the visibility area
with respect to the overall number of items located in the
same area. The El function is normalized so that its value is
comprised between 0 and 1. In particular, an entropy value
equal to 1 corresponds to the presence of comparable numbers
of items of the different classes, whereas a low entropy is
obtained when the area centered in l has accumulated a large
number of items belonging to one specific class. As shown in
formula (4), the overall entropy E is defined as the average
of the entropy values El computed at all the system cells (the
number of cells is equal to Nl).

El =

∑
(c=1...C) fc · lg 1

fc

lgC
(3)

E =

∑
l El

Nl
(4)

This kind of ant algorithm can be transparently executed
in a parallel environment while ensuring scalability and pre-
venting consistency issues, as discussed in Section IV.

IV. AN AGENT-BASED FRAMEWORK FOR PARALLEL SI
ALGORITHMS

As the problem size increases, it may be convenient to par-
allelize or distribute the execution of an entire SI algorithm. In

331

literature, there are different strategies for parallelizing swarm
intelligent algorithms, mainly oriented towards particular types
of algorithm, specially ant-based (see [10] [19] [15] [23]) and
flock-based (see [7] [16]), but to the best of our knowledge
there is no unified discussion on parallelizing swarm intelligent
algorithms.

Actually, most of the SI algorithms can be suitably modeled
and implemented using a multi-agent system, where agents
interact in a spatial environment. In literature, this kind of
agents are often called situated agents, i.e., an agent owns
spatial coordinates and is embedded into the territory (spatial
environment), where it lives and moves [22] [11]. Furthermore,
the space can also be populated by some data, which is
usually processed by agents in order to accomplish a task,
i.e., clustering, sorting, etc..

Before going into the issues related to parallelization, we
need to introduce the notions of visibility and action radius.
The visibility radius (VR) is exploited in order to delimit the
area within which an agent is able to perceive its surrounding
space. The action radius (AR) defines the area that can be
modified by a single operation of an agent located in a given
position.

The way SI algorithms can be parallelized ultimately de-
pends on the interaction patterns allowed among the agents, the
space and the data. Indeed, in a parallel/distributed scenario,
frequent concurrent accesses of agents to the territory can
easily become a bottleneck that limits system performance
and scalability. Another aspect to be considered is that data
objects and agents can be either partitioned in accordance
with agents’ spatial positions (space partitioning) or they can
be randomly sampled and partitioned over the nodes of the
parallel/distributed architecture (data partitioning).

Based on these considerations, three strategies for paral-
lelization are proposed in the following, two based on space
partitioning (with or without conflict management) and one
based on data partitioning.

A. Space partitioning

With the space partitioning strategy, the whole territory is
split into regions. Each region, along with the data and the
agents residing on it, is allocated for execution on a distinct
computing node [4] [5] [6]. The borders of the regions, i.e.,
the portions of the space which are adjacent among contiguous
regions, require to be kept aligned and updated. Partitioning
the territory among multiple nodes is a key to avoid the
access to shared content to become a bottleneck. Splitting the
territory favors system scalability as the size of the problem
increases (in terms of number of agents, data size or territory
size) and more computing nodes are used to speed up the
execution. The strategy based on partitioning can be further
refined in space partitioning without conflict avoidance and
space partitioning with conflict avoidance. The former can
be used when the algorithm is not affected by concurrency
issues. The latter, instead, is used to transparently avoid that
concurrent agents allocated on different computing nodes may
undergo conflicting actions.

1) Space partitioning without conflict avoidance: In order
to use the partitioning schema without conflict avoidance,

Fig. 3. The North-East dataset

the basic assumption is that the algorithm be conflict-free
by itself. Basically, this property is related to the state of
the spatial environment and the interaction between agents
and the environment. If agents can modify the state of the
territory, issues related to the concurrent access should be
taken into account thus preventing loss of consistency in the
data. For example, let us consider an ant-based algorithm (as
the one presented in Section III) in the space partitioning
scenario. The agents carry objects from place to place across
the territory so two concurrent agents (i.e., executing on
different computing nodes) may pick up the same object at
the same time or collapse moving towards the same cell. On
the basis of these considerations, we can claim that this kind of
algorithm needs conflict avoidance mechanisms such as those
described in IV-A2. Conversely, a flock-based algorithm, as
the one presented in Section II, can be parallelized without
conflict avoidance. Indeed, flocks only need to read the spatial
environment in order to set their flying activities. In other
words, each flock can only modify its own state while the
territory is just the algorithm input and does not change during
the execution. In addition, flocks are already equipped with a
specific conflict avoidance mechanism based on the separation
distance as described in Section II.

For the sake of clearness, we take as an example the
dataset North-East (see Figure 3), widely used for the task of
clustering the three populated towns of Boston, New York and
Philadelphia. Figure 4 graphically suggests how the territory
may be partitioned in regions. Each agent is executed by
the computing node hosting the region where the agent is
located. Agent migration is required when an ant moves from
a region to another. During exploration, an agent requires to
retrieve information about its neighborhood, i.e., the portion of
the territory covered by its visibility area. These interactions
are local when the neighborhood is comprised in the same
region and hence managed by the same computing node.
Conversely, when the neighborhood involves the same portion
of the territory belonging to other regions, remote interactions

332

Fig. 4. Search space decomposed among 9 nodes.

Borders

agent

{{

Local Border

Mirror Border

Local Border

Mirror Border

Node 1

Node 2

Node 1 Node 2

Fig. 5. Border areas of two adjacent nodes.

– with inter-node information exchange – would be required
if this issue is not properly managed. In our approach, in
order to avoid remote agent operations, the edge portion of
a region is replicated in adjacent nodes. This edge portion is
referred to as a border of the region. As shown in Figure 5, the
border area of a given region (consider Node 1 in the figure) is
made up of two distinct parts: the local border and the mirror
border. The first is managed by the local node, and information
updates are sent to the mirror border of the adjacent node, i.e.,
Node 2. Analogously, the mirror border of Node 1 includes
information replicated from the local border of Node 2. The
width of borders is determined by the visibility radius. Borders
are kept aligned by exchanging update messages among the
computing nodes that manage adjacent regions. This strategy
allows all the sensing operations to be performed locally.

2) Space partitioning with conflict avoidance: In this sce-
nario, issues relevant to consistency and conflict resolution
on shared data are handled. Usually, conflict resolution and
consistency are achieved by resorting to synchronization prim-
itives (e.g. based on locks), which, though, may present two
main drawbacks: (i) they may hinder the transparency of the
parallelization procedure, since the developer is compelled
to cope with the management of such primitives, and (ii)
they may negatively impact on performance and scalability.
Our approach allows the mentioned issues to be tackled by
using a methodology, based on logical time [4] which is

Node1 Node2

ant
item

(a) A conflicting scenario

Borders {

ant

Node1 Node2

action area conflicting
area

(b) Potentially conflicting ants and
conflicting area

Fig. 6. Scenario with ants conflicting on the borders of two nodes

able to transparently enforce a conflict-free and fair execution
order on concurrent actions. The territory is modeled as a bi-
dimensional discrete grid of cells. Update messages are still
used to keep the borders aligned.

Figure 6(a) shows an example of conflicting scenario where
some ants compete to pick up the same items contained in
the grey cells. As the ants operate concurrently, two of them
may try to pick up the same item: if both pick operations
are actually performed, this will lead to an inconsistent state
of the algorithm. Each node operates sequentially, i.e., a non-
preemptive interleaved execution of agent actions is adopted.
Therefore, agents execute concurrently only if they are located
on different regions. As shown in Figure 6(b), two agents are
potentially conflicting when they belong to different regions
and their action radii overlap. The conflicting area is defined as
the portion of the territory that can host potentially conflicting
ants (see the grey part of Figure 6(b)).

To prevent conflicts we borrow the notion of logical time
from the distributed system field. The logical time concept
[17] is typically used to prevent causality-constraint violations
in distributed systems. In our approach, instead, we exploit it
as a tie-breaking mechanism that prevents conflicts [5]. The
idea underlying our approach consists in establishing a partial
order of agent executions during a given time step such that
no potentially conflicting agents will execute concurrently. The
problem reduces to assigning, at any given time step, labels
(natural numbers) to agents such that potentially conflicting
agents are assigned different labels. The labels are used as a
logical time that enforces a conflict-free execution order. At
each time step, every computing node executes the agents lo-
cated in the corresponding region, respecting the label ordering
discussed here: it executes all the ants with label 1 (the order
among them is inessential), then those with label 2, etc. To
ensure the algorithm consistency, the nodes must synchronize
among them with respect to time steps and ordering labels.

An easy fashion to perform a conflict-free labeling of
agents is: first assign labels to the cells belonging to the
conflicting area and then assign each agent the label of the cell
where the ant is located. Figure 7 shows the schema adopted
in this work.

333

Borders
{

Node1 Node2

conflicting
area

0 1 4 5
1 0 5 4
0 1 4 5
1 0 5 4
2 3 6 7
3 2 7 6
2 3 6 7
3 2 7 6
4 5 0 1
5 4 1 0
4 5 0 1
5 4 1 0
6 7 2 3
7 6 3 2
6 7 2 3
7 6 3 2

Fig. 7. Schema adopted for assigning labels to cells in the conflicting area

The choice of adopting the schema of Figure 7 derive, as
detailed in [4] [5], from two requirements: (i) limit the number
of labels, so as to reduce the number of synchronization points
and (ii) assign the labels to cells so that two adjacent regions
will always execute comparable numbers of operations at each
label, i.e., at each logical time. The latter requirement helps to
maximize the concurrency degree. The schema of Figure 7 is
established by using a backtracking-based algorithm executed
offline with respect to the execution of the SI algorithm so as
not to affect system performance.

B. Data partitioning

The strategy consists of partitioning the data among differ-
ent nodes, while the space is shared/replicated over the nodes.
More in detail, each node handles the whole space, which
contains only a subset of the data objects to be processed.
Typically the data can be portioned equally among the nodes,
but a different strategy could consider the assignment of a
portion of data proportional to the computation power of the
nodes.

The computation is synchronized only at the beginning,
when data is sampled and distributed, and at the end, when
results are collected. Depending on the particular needs of the
algorithm, partial results or useful info could be exchanged
after each iteration. Figure 8 illustrates an example of this
approach for the North-East dataset.

C. Discussion

Using the data partitioning strategy, the load is well
balanced, but other problems could raise. First of all, it is
necessary to choose the right threshold (i.e., the right number
of nodes on which divide the data), otherwise, by dividing
data among the nodes, part of the data could be not efficiently
processed. Furthermore, while by partitioning the space, the
final results of the algorithm will be the same as the sequential
case, this does not apply to this strategy. Indeed, the results
could depend on the number of agents chosen to process the
data, on the portion of data, which could not be sufficient to
obtain determined results, and also on the number of nodes.

Conversely, using space partitioning, the load balancing
constitutes a critical and well known issue [3]. In fact, for
instance in the Figure 4, node 9 does not work at all and
nodes 1, 6 and 8 work on a very limited portion of data.
To obtain a better load balancing, choosing more complicated
decomposition would help, but this would require a deeper
knowledge of the domain of data and would bring to a more
complex communication pattern among neighboring nodes,
increasing the communication overhead.

Fig. 8. Search space decomposed among 9 nodes (partitioning the data).

Anyway, in situations in which for reasons of privacy
or because data are too large to be moved or because data
are already logically and physically distributed, the space
partitioning solution should be strongly taken into account.
For example, this is the case of a scenario in which huge
amounts of data are stored in autonomous, geographically
distributed sources over networks with limited bandwidth and
large number of computational resources.

V. EXPERIMENTAL RESULTS

This section evaluates the achievable execution perfor-
mance of the discussed strategies for parallelizing SI algo-
rithms. For each kind of strategy, a different set of experiments
was performed, and results are shown in the next subsections.
Performance of parallel execution is assessed by measuring
the speedup value, computed as the ratio of the execution
time measured on a single node and the execution time on
multiple nodes. The experiments were carried out on a cluster,
in which each computing node has two CPU Intel(R) Xeon(R)
CPU E5-2670 2.60GHz and 128GB RAM. The nodes are
interconnected by a high performance Infiniband network.

A. Speedup for the case of space partitioning

This strategy has been evaluated for a typical clustering
context where the ant algorithm of section III is used to sort
items belonging to different classes. The items are spread in
a two-dimensional grid of 120 x 100 cells, and an average
number of items per cell equal to 50. The items belong to a
number of classes C equal to 9 and are randomly spread over
the cells in accordance to a uniform distribution. The number
of ant-like agents is equal to 600,000. The visibility radius
VR is set to 10. The value of the overall entropy, as defined

334

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of nodes

With Conflict-avoidance
Without Conflict-avoidance

Fig. 9. Speedup vs. the number of computing nodes.

in expression (4), is used as stop criteria for the algorithm.
The entropy is computed every 1000 time steps, and decreases
as the algorithm proceeds, confirming its effectiveness. The
system is considered stable, i.e., the algorithm terminates,
when 10 consecutive values of the entropy differ among them
no more than 1%. The scalability is evaluated with two sets of
experiments: in the first set we used the strategy for conflict
avoidance described in Section IV-A2, while in the second set
we did not manage conflicts1. For both sets of experiments,
we varied the number of parallel nodes up to 8.

Figure 9 reports the values of speedup vs. the number
of computing nodes for the two sets of experiments. Experi-
mental results show the good scalability and performance of
the approach, and confirm that the management of conflicts
introduces a slight overhead, which is witnessed by a lower
speedup value.

B. Speedup for the case of data partitioning

This strategy does not present particular problems in terms
of scalability, since in most cases the flocking algorithm does
not require to exchange data among the nodes. However,
depending on the specific problem that the flocking algorithm
tries to solve, it could be necessary to exchange partial results
or some data. In our experiments, we consider a simple case
of a flock searching for points with a desired property, i.e., that
the density of neighboring points within a given radius exceeds
a predefined threshold. The points presenting this property are
exchanged for each iteration of the flocking algorithm. Note
that the algorithm constitutes the basis for the implementation
of a clustering algorithm or an outlier detection algorithm.

Using the North-East dataset, two sets of experiments
are conducted, considering respectively a total number of
10,000 and 100,000 points randomly sampled from the original
dataset. All the data are partitioned over a number of nodes
varying from 1 to 8. A visibility radius of 10 was considered.

Figure 10 shows the values of speedup for the two test
suites. It is clear that the scalability is almost linear for
both cases, and it is mainly due to the limited overhead of
communication of the strategy. The case of 100,000 scales
slightly worst because the number of points verifying the

1Of course the possible presence of conflicts can affect the correct behavior
of the application. Here, the goal of the tests is merely to assess performances.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of nodes

10,000 data points
100,000 data points

Fig. 10. Speedup vs. the number of computing nodes for 10,000 and 100,000
data points.

property and that have to be exchanged is larger – hence, the
time needed for data transmission increases – while the time
needed to compute the density is hardly affected by the number
of points.

VI. CONCLUSIONS

Two different strategies for parallelizing SI algorithms are
presented, the first based on the partitioning of the space in
which the agents move, and the second on the partitioning of
the data to be processed by the agents. In addition, a method-
ology for avoiding concurrency issues is used to transparently
avoid that concurrent agents allocated on different computing
nodes may undergo conflicting actions. A flocking algorithm
for searching objects and an ant algorithm for spatial clustering
are used to better illustrate the advantages and drawbacks of
the two approaches.

Experiments show that both methodologies are efficient and
scale well. In particular, space partitioning is more convenient
when there are privacy requirements, when moving data is
expensive/unfeasible or when the management of conflicts
is essential. Moreover, space partitioning guarantees that the
obtained results are the same as in the sequential case, while
data partitioning ensures better results in terms of scalability.

ACKNOWLEDGMENT

This work has been partially supported by MIUR-PON
under project PON03PE 00032 2 within the framework of
the Technological District on Cyber Security and project
PON03PE 00050 2 within the framework of the Technologi-
cal District on Smart Home (DOMUS).

REFERENCES

[1] Ozalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill: A
framework for the development of agent-based peer-to-peer systems. In
Proc. of the 22 nd International Conference on Distributed Computing
Systems ICDCS’02, pages 15–22, Washington, DC, USA, 2002. IEEE
Computer Society.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence:
from natural to artificial systems. Oxford University Press, New York,
NY, USA, 1999.

335

[3] Mario Cannataro, Salvatore Di Gregorio, Rocco Rongo, William
Spataro, Giandomenico Spezzano, and Domenico Talia. A parallel
cellular automata environment on multicomputers for computational
science. Parallel Computing, 21(5):803–823, 1995.

[4] F. Cicirelli, A. Giordano, and L. Nigro. Distributed simulation of situ-
ated multi-agent systems. In Proc. of the IEEE/ACM 15th International
Symposium on Distributed Simulation and Real Time Applications,
pages 28–35, Washington, DC, USA, 2011.

[5] F. Cicirelli, A. Giordano, and L. Nigro. Efficient environment man-
agement for distributed simulation of large-scale situated multi-agent
systems. Concurrency and Computation: Practice and Experience,
2014.

[6] Franco Cicirelli, Agostino Forestiero, Andrea Giordano, and Carlo
Mastroianni. An approach for scalable parallel execution of ant algo-
rithms. In International Conference on High Performance Computing
& Simulation, HPCS 2014, Bologna, Italy, July 2014.

[7] Xiaohui Cui and Thomas E. Potok. A distributed agent implementation
of multiple species flocking model for document partitioning clustering.
In Cooperative Information Agents X, 10th International Workshop,
2006, Edinburgh, UK, September 11-13, 2006, Proceedings, pages 124–
137, 2006.

[8] Prithviraj Dasgupta. Intelligent agent enabled peer-to-peer search using
ant-based heuristics. In Proc. of the International Conference on
Artificial Intelligence IC-AI’04, pages 351–357, 2004.

[9] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain,
and L. Chrétien. The dynamics of collective sorting robot-like ants
and ant-like robots. In Proc. of the First International Conference on
Simulation of Adaptive Behavior on From Animals to Animats, pages
356–363, Cambridge, MA, USA, 1990. MIT Press.

[10] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic
control for communications networks. J. Artif. Int. Res., 9(1):317–365,
December 1998.

[11] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison Wesley Longman, 1999.

[12] Gianluigi Folino, Agostino Forestiero, and Giandomenico Spezzano. An
adaptive flocking algorithm for performing approximate clustering. Inf.
Sci., 179(18):3059–3078, 2009.

[13] Agostino Forestiero, Carlo Mastroianni, and Giandomenico Spezzano.
So-grid: A self-organizing grid featuring bio-inspired algorithms. ACM
Transactions on Autonomous and Adaptive Systems, 3(2), May 2008.

[14] P. Grassé. La reconstruction du nid et les coordinations inter-
individuelles chez bellicosi-termes natalensis et cubitermes sp. la theorie
de la stigmergie: Essai d’interpretation des termites constructeurs.
Insectes Sociaux, 6:41–84, 1959.

[15] Timur Keskinturk, Mehmet B. Yildirim, and Mehmet Barut. An ant
colony optimization algorithm for load balancing in parallel machines
with sequence-dependent setup times. Computers & Operations Re-
search, 39(6):1225 – 1235, 2012.

[16] Marek Kisiel-Dorohinicki. Flock-based architecture for distributed
evolutionary algorithms. In Artificial Intelligence and Soft Computing
- ICAISC 2004, 7th International Conference, Zakopane, Poland, June
7-11, 2004, Proceedings, pages 841–846, 2004.

[17] L. Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[18] Marc Martin, Bastien Chopard, and Paul Albuquerque. Formation of
an ant cemetery: swarm intelligence or statistical accident? Future
Generation Computer Systems, 18(7):951–959, 2002.

[19] Martn Pedemonte, Sergio Nesmachnow, and Hctor Cancela. A survey
on parallel ant colony optimization. Applied Soft Computing, 11(8):5181
– 5197, 2011.

[20] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, pages 25–34, New
York, NY, USA, 1987. ACM Press.

[21] Katia Sycara. Multiagent systems. Artificial Intelligence Magazine,
10(2):79–93, 1998.

[22] M. Wooldridge. An introduction to multi-agent systems. John Wiley &
Sons, Ltd., 2002.

[23] Yan Yang, Xianhua Ni, Hongjun Wang, and Yiteng Zhao. Parallel
implementation of ant-based clustering algorithm based on hadoop. In
Proc. of the 3rd Int. Conference on Advances in Swarm Intelligence
- Part I, ICSI’12, pages 190–197, Shenzhen, China, October 2012.
Springer-Verlag.

336

